MIR.models.VFA
- class MIR.models.VFA(*args: Any, **kwargs: Any)[source]
VFA model for image registration.
- Parameters:
configs – VFA configuration object.
device – Device to run the model on.
return_orginal – If True, return VFA-style composed grids and stats.
return_all_flows – If True, return flows for all decoder levels.
SVF – If True, integrate flow as stationary velocity field.
SVF_steps – Number of scaling-and-squaring steps for integration.
return_full – If True, also return warped images and inverse flow.
- Forward inputs:
sample: Tuple (mov, fix) tensors of shape [B, 1, *spatial].
- Forward outputs:
Depending on flags, returns flow(s) or a results dict.
- __init__(configs, device, return_orginal=False, return_all_flows=False, SVF=False, SVF_steps=7, return_full=False)[source]
Methods
__init__(configs, device[, return_orginal, ...])forward(sample)Run forward registration.