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When deploying a pretrained ConvNet for clinical * Pretrained PET denoising ConvNet: XiaveTi-y W >eTis ylaverey o ylayer, W  Compared methods
applications, we often face two challenges: A 2.5D DnCNN [1] that takes three consecutive 2D o Baseline networks:

* When new imaging systems and or updated image slices as its input. - : ’ n=0
Ay
Q

o vl1-net: DnCNN trained with v1 images
o v2-net: DnCNN trained with v2 images
o Fine-tuning task:
o FT-net: Fine-tuning the last three convolutional blocks.

reconstruction algorithms are employed:

* Identifying which feature maps are “meaningful .
* Image quality and appearance will change. fying f P g/

To update the specific kernels in the fine-tuning

* Neural networks need to be retrained to adapt the . . . . . o | - . | |
changes training, the information richness in the feature maps — 2 o TGD-net: vi-net fine-tuned using the TGD layers
oF>- s - N b rovod a2l needs to be determined. The corresponding network : ciindex of input featuremap | o Online-learning task:

. reconstruction & reconstruction kernels can then be identified and updated in the Fig: The framework of TGD training. The kernel weights in layer i o TGD_NZN-net: TGD N2N applied on the v2-net
retraining stage to generate new feature maps. Here we | |(ie,W,">°") were used to calculate KSE scores for the input feature o TGD_NZN”2 -net: TGD N2N applied on the TGD-net
used Kernel Sparsity and Entropy (KSE) metric maps in layer i (i.e.,, Xé?yeri], then the kernels in layeri — 1 (e.g, the | |* Determine KSE threshold ¢

R ARy prOpOSGd by Ll et al [2] green box: W. A C:Ve i] thatgenerated the inputfeature maps 5 Iayeri ‘n”u" j e (O?isgfir?a};ljl;‘;r(llzNoN) KSE Thresh: 0.3 KSE Thresh: 0.4 KSE Thresh: 0.5 KSE Thresh: 0.6
Fig: Change in image quality and appearanc due to a change in * Kernel Sparsity and Entropy (KSE) (ie., Xl YeTH) were identified and would be retrained in the proposed | 4
reconstruction algorithm. KSE [] quantifies the sparsity and information richness TGD method.
c A tra_m?d DNN often produces suboptimal in a kernel to evalua}te a feature map'’s importance-to e\ o 700 marge-Zeratas ez learning Fig: KSE threshold values of 0.3 and 0.4 resembles the original
predictions on unseen features. network. KSE contains two parts: the kernel sparsity, s, Neural networks tend to produce suboptimal denoising performance the best.
Unseen features;erary‘clatheterS) lAmfaCt.Sl and the kernel .entropy, Ec- predictions on images that contain out-of-distribution }n Z;Glrgéﬁge tulnlng . — oh
\.l \.l 1. Kernel sp C]IVI” sity Sc: 11-norm of the kernels. features (features that are never seen in the training X o e e R p ey ——
\i. ; * S = 2n=1 Wl | | dataset). We then proposed to use TGD-network for
A | 2. Kernel entropy e.: a measure of the diversity among| |noN [9] online learning training, which alleviated
i it et i the kernels. hallucination artifacts from the images.
Fig: A denoising network produced artifacts on features that were . Z dm(Wl ) 5 dm(Wl c) oo oo P T
| not included in the training dat.aset. 1= 0 SN-LdmW; ) 52 SN-TdmW; o) resting | sample1 | [ .. J_’ - | sample 2 Speckle ‘
In this study, we present Targeted Gradient Descent 2 KSE score: study N[ ] ‘ oh ilie, DL AN :
(TGD), a novel fine-tuning method that can extend a S Splitinto 2 |2ompie? 2ample Fig: Qualitative comparisons between the proposed TGD method
. . . e KSE = 2 samples in the and other methods on denoising two FDG patient studies. The red
pre-trained network to a new task without revisiting 1+a-e, . data domaci; oD . | o numbers indicate the ensemble bias (%) comparing to the ground
- - - . . . 1g. e propose noise-<Z-noise oniine itedarning metnodad.
data from the previous task while preserving the KSE is normalized to [0, 1] in each layer. g oo g truth; the yellow numbers denote the liver CoV (%).

knowledge acquired from previous training. To a further
extent, the proposed method also enables online
learning of patient specific data. We demonstrate the
proposed method’s effectiveness in denoising tasks for
PET images.
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[dentify the indices of the convolution kernels that
generate the “useless” feature maps by setting a KSE

threshold ¢. The indices were used for generating a

binary mask M,, in the gradient space: of PET image denoising
4 " 5 Pates * A DnCNN was trained using FDG PET images
if KSE(Y,) < ¢

)
. « M, =- L _ reconstructed from a prior version of the OSEM
Rat]onale 0, if KSE(Yn) = ¢ algorithm. We denote these images as vl images and
M,, zeros out the gradients for the “useful” kernels (i.e., the pretrained DnCNN as the v1 network.

We demonstrate the proposed TGD method on the task

Urinary catheters
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* There are “Useless/redundant” feature maps exists ones with KSE(Y,,) = ¢) during retraining (or fine- + The v1 network produces oversmoothed results e ) e # . }l : ;l ’
. : : . . . V. o V.
in a pretrained ConvNet, because ConvNet did not tuning). Mathematically, the back-propagation formula when it is applied on the PET images reconstructed N s : . ;
efficiently use all of its kernels, and some of kernels with TGD is defined as: by an updated OSEM algorithm (we denote these E
' (t) . . . O N ] 2 g
contribute le.s.s. | ) ) o D — (O _ n-2% M X(t) ORWnc) \r 5 (0) images as v2 images). | | m ; “ | “ | m m |
* (Can we specifically retrain these “useless” kernels e n,c ay(t) GYTEt) Fig: ConvNet denoised N (ST o reCer SRR e
« ” 2 : - - results of a v2 image | | | |
that generates “useless/redundant” feature maps This masking process is packaged into a novel TGD layer genemt;d by the VLZ Fig: The red arrows indicate the unseen features, which was not
| I""\‘—........ that only activates during backpropagation and not e s . ot network and v2 included in any training datasets. The online learning approaches
I | EEEEEEEE forward pass. Conv2D:256 el raer il Cetwork alleviated the artifacts while retaining similar denoising
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