Source code for MIR.image_similarity.SSIM

"""Structural Similarity Index (SSIM) utilities."""
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import exp
import math
import torch.nn as nn

[docs] def gaussian(window_size, sigma): """Create a 1D Gaussian kernel for SSIM windows.""" gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum()
[docs] def create_window(window_size, channel): """Create a 2D SSIM window tensor.""" _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window
[docs] def create_window_3D(window_size, channel): """Create a 3D SSIM window tensor.""" _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()) _3D_window = _1D_window.mm(_2D_window.reshape(1, -1)).reshape(window_size, window_size, window_size).float().unsqueeze(0).unsqueeze(0) window = Variable(_3D_window.expand(channel, 1, window_size, window_size, window_size).contiguous()) return window
def _ssim(img1, img2, window, window_size, channel, size_average=True): """Compute 2D SSIM for a pair of images. Args: img1: Tensor (B, C, H, W). img2: Tensor (B, C, H, W). window: SSIM window tensor. window_size: Window size. channel: Number of channels. size_average: If True, returns scalar mean. Returns: SSIM value (scalar or per-image). """ mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) def _ssim_3D(img1, img2, window, window_size, channel, size_average=True): """Compute 3D SSIM for a pair of volumes. Args: img1: Tensor (B, C, H, W, D). img2: Tensor (B, C, H, W, D). window: SSIM window tensor. window_size: Window size. channel: Number of channels. size_average: If True, returns scalar mean. Returns: SSIM value (scalar or per-image). """ mu1 = F.conv3d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv3d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv3d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv3d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv3d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1)
[docs] class SSIM2D(torch.nn.Module): def __init__(self, window_size=11, size_average=True): super(SSIM2D, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel)
[docs] def forward(self, img1, img2): """Compute 2D SSIM between two images. Args: img1: Tensor (B, C, H, W). img2: Tensor (B, C, H, W). Returns: SSIM score. """ (_, channel, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
[docs] class SSIM3D(torch.nn.Module): def __init__(self, window_size=11, size_average=True): super(SSIM3D, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window_3D(window_size, self.channel)
[docs] def forward(self, img1, img2): """Compute 3D SSIM between two volumes. Args: img1: Tensor (B, C, H, W, D). img2: Tensor (B, C, H, W, D). Returns: SSIM score. """ (_, channel, _, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window_3D(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return 1-_ssim_3D(img1, img2, window, self.window_size, channel, self.size_average)
[docs] def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.size() window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average)
[docs] def ssim3D(img1, img2, window_size=11, size_average=True): (_, channel, _, _, _) = img1.size() window = create_window_3D(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim_3D(img1, img2, window, window_size, channel, size_average)